
SHTC3 – SHT4x Transition Guide

Boarding the new flagship RH/T sensor generation

Features

- Improved accuracy, power consumption, and
 robustness
- Powerful internal heater for selfdecontamination
- Superior versatility and technology from two decades of sensor development
- Relative humidity accuracy: up to ±1.0 %RH
- Temperature accuracy: up to ±0.1 °C
- Supply voltage: 1.08 V ... 5.5 V
- Average current: 0.4 µA (at meas. rate 1 Hz)
- Idle current: 80 nA
- Fully functional in condensing environment

General Description

Once introduced as a specialty digital humidity (RH) and temperature (T) sensor for high volume consumer electronics, the SHTC3 enabled outstanding sensing performance in a small package for several years. Sensirion now proudly recommends it's all new flagship successor from the SHT4x family, which profits from about two decades of RH/T sensor development. Dedicated to best-inclass performance, low power consumption, smallest footprint, and attractive pricing, our new SHT4x sensors are the products of choice for many SHTC3 applications. In particular, the SHT4x outperforms the SHTC3 in every aspect and offers versatile add-ons, such as a powerful heater for self-decontamination, conformal coating protection, or filter membranes, previously not available for the SHTC3.

Important Changes

Parameter	SHTC3	SHT4x
Dimensions (mm ³)	$2.0\times2.0\times0.75$	1.5 imes 1.5 imes 0.5
Pin assignment	Comp	arable
Interface	l ² C, single address	I ² C, multiple addresses
Supply voltage (V)	1.62 - 3.6	1.08 – 5.5 ¹
Av. current (μA @ 1Hz)	4.9	0.6
Typ. RH accuracy (%RH)	±2.0	±1.8 – ±1.0
Typ. T accuracy (°C)	±0.2	±0.2 – ±0.1
Response time τ 63% (s)	8	4
Filter membrane	Not available	Available
Conformal coating	Not possible	Possible
Additional features	-	Powerful heater with $\Delta T \ge 60^{\circ}$ C,

¹ SHT4xI has a higher possible supply voltage up to 5.5V

	Full condensation robustness

Contents

Features	1
General Description	
Important Changes	1
1 Purpose	
2 Performance Comparison	3
2.1 Relative Humidity and Temperature	3
2.2 Electrical Characteristics	4
2.3 Timing Specifications	
3 Flagship SHT4x Feature: Built-In Heater	4
4 Package Design Differences	5
5 Communication Compatibility	
6 Quality and Material Contents	
7 Further Information	7
8 Revision History	7

1 Purpose

This document aims to provide a high-level guideline to replace SHTC3 with sensors from the SHT4x family and outlines important differences to be considered in design-in processes.

2 Performance Comparison

Parameter	Conditions	SHTC3	SHT4x	Units
Relative humidity			I	·
RH accuracy ²	Тур.	±2	1.0 ±1.8	%RH
High repeatability ³	-	0.1	0.08	%RH
Resolution ⁴	-	0.01	0.01	%RH
Hysteresis	-	±1	±1	%RH
Specified range ⁵	extended ⁶	0 – 100	0 – 100	%RH
Response time ⁷	au 63%	8	4	S
Long-term drift ⁸	Тур.	< 0.25	< 0.25	%RH/y
Condensation behavior	Droplet formation	Slight signal drop	No signal drop	-
Temperature			1	
T Accuracy ¹	Тур.	±0.2	±0.1	°C
High repeatability ²	-	0.1	0.04	°C
Resolution ³	-	0.01	0.01	°C
Specified range ⁴	-	-40 - +125	-40-+125	°C
Response time9	τ 63%	< 5 - 30	2	S
Long-term drift ¹⁰	Тур.	< 0.02	< 0.01, < 0.03	°C/y

2.1 Relative Humidity and Temperature

Table 1. Humidity and temperature specifications of the SHTC3 and SHT4x, where bold values highlight important differences. For further details, kindly refer to the SHTC3 and SHT4x datasheets.

² For definition of typ. accuracy, please refer to the document "Sensirion Humidity Sensor Specification Statement".

³ The stated repeatability is 3 times the standard deviation (3σ) of multiple consecutive measurement values at constant conditions and is a measure for the noise on the physical sensor output. Different repeatability commands are listed in **Table 5**.

⁴ Resolution of A/D converter.

⁶ For details about recommended humidity and temperature operating range, please refer to the SHT4x Datasheet.

⁸ Typical value for operation in normal RH/T operating range. Max. value is < 0.5 %RH/y. Value may be higher in environments with vaporized solvents, out-gassing tapes, adhesives, packaging materials, etc. For more details, please refer to Handling Instructions.</p>

⁹ Temperature response time depends on heat conductivity of sensor substrate and design-in of sensor in application.

¹⁰ Max. value is < 0.04 °C/y. The long-term drift for SHT43 is < 0.01 C/y.

⁵ Specified range refers to the range for which the humidity or temperature sensor specification is guaranteed.

⁷ Time for achieving 63% of a humidity step function, valid at 25°C and 1 m/s airflow. Humidity response time in the application depends on the design-in of the sensor.

Parameter	Symbol	Conditions	Conditions SHTC3		SHT4x			Units	
			Min.	Тур.	Max.	Min.	Тур.	Max.	
Supply voltage	V _{DD}		1.62	3.3	3.6	1.08	3.3	3.6	V
Power-up/down level	VPOR	Static power supply	1.28	1.4	1.55	0.6	-	1.08	V
		Sleep/Idle	-	0.3	0.6	-	0.08	-	μA
Supply current (heater not		Meas.	-	430	900	-	320	-	μA
activated)	100	Average	-	4.9	-	-	0.4 (low) 2.2 (high)	-	μA
Power consumption	-	Average	16.2	-	-	-	0.5 (low) 2.6 (high)	-	μW
Low level input voltage	ViL	-	-	-	0.42 V _{DD}	0	-	0.3 V _{DD}	V
High level input voltage	Vін	-	0.7 V _{DD}	-	-	0.7 V _{DD}	-	V _{DD}	V
Application circuit design	-	-	Identica	al, for det	ails see SI	HTC3 oi	r SHT4x data	sheet	-

2.2 Electrical Characteristics

Table 2. Key electrical specifications of the SHTC3 and SHT4x, where bold values highlight important differences. For further details, kindly refer to the SHTC3 and SHT4x datasheets.

2.3 Timing Specifications

Parameter	Symbol	Conditions	SHTC3		SHT4x			Units	
			Min	Тур.	Max	Min	Тур.	Max	
Power-up time	t ₽U	After hard reset, V _{DD} ≥ V _{POR}	-	0.18	0.24	-	-	1	ms
Soft reset time	<i>t</i> sr	After soft reset	-	0.18	0.24	-	-	1	ms
Measurement duration	<i>t</i> Meas	Medium repeatability	-	10.8	12.1	-	3.7	4.5	ms
Heater-on duration	<i>t</i> _{Heater}		-	-	-	0.1	-	1.0	S

Table 3. Key timing specifications of the SHTC3 and SHT4x, where bold values highlight important differences. For further details, kindly refer to the SHTC3 and SHT4x datasheets.

3 Flagship SHT4x Feature: Built-In Heater

The SHT4x sensor incorporates a powerful on-chip heater, which can be used for self-decontamination, *e.g.* in environments with solvents present, and periodical creep compensation in prolonged application in highest humidity. It provides an over-temperature of about 60 °C and can be switched on by the command specified in **Table 5**, after which the heater will run for 1 second. After 1 second, a temperature and humidity measurement is started and the heater will be automatically turned off after the measurement is finished. This safety feature prevents permanent turn-on of the heater. There is no dedicated command to turn off the heater. If higher temperatures than achievable by heating for 1 second are desired, consecutive heating commands need to be sent to the sensor.

4 Package Design Differences

The SHT4x comes in a new open-cavity dual flat no lead (DFN) package design in order to enable significant size reduction while allowing additional features, such as conformal coating, protection cover, and filter membrane compatibility. Similar to the SHTC3, the humidity sensor opening is centered on the top side of the SHT4x package (see **Figures 1,2**). The bottom side of the both DFN package exposes metallic contacts, which are Ni/Pd/Au coated, while the side walls of the contacts are bare copper.

Parameter	Units	SHTC3	SHT4x	Comment
Size	mm	2.0 x 2.0 x 0.75	1.5 x 1.5 x 0.5	For details, see Figures 1,2.
Sensor opening	-	Тор	Тор	
Protection compatibility	-	none	Compatible with conformal coating and filter membranes	
Pin Layout	-	2 x 2 pins	2 x 2 pins	
Pin Assignment	-	VDD OSHTQ3 VSS SCL AXY89 SDA	SDA SHT4 VSS SCL SABC VDD	Drawings not to scale. VDD: Supply voltage SCL: Serial clock SDA: Serial data bidirectional VSS: Ground
Pin Size	mm	0.35 x 0.35	0.3 x 0.3	
Pin Pitch	mm	1.0	0.8	
Pin Material	-	Ni/Pd/Au coated Cu	Ni/Pd/Au coated Cu	
Housing Material	-	Epoxy housing	Epoxy housing	

Table 4. Key package differences between the SHTC3 and SHT4x. For further details, kindly refer to the SHTC3 and SHT4x datasheets.

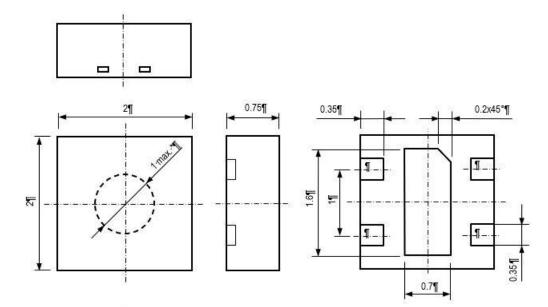


Figure 1. Dimensional drawing of the SHTC3 (units mm).

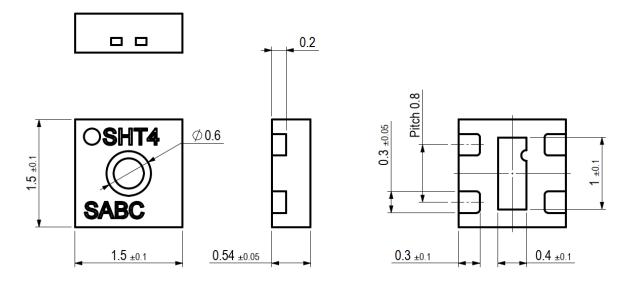


Figure 2. Dimensional drawing of the SHT4x including package tolerances (units mm).

5 Communication Compatibility

Both chips feature the I²C communication protocol, however, while the SHTC3 has a fixed I²C address, the SHT4x features a default I²C address (0x44) and alternative addresses for high flexibility in all applications. Addressing a specific SHT4x sensor is done by sending its 7-bit I²C address followed by an eighth bit, denoting the communication direction: "Zero" indicates transmission to the sensor, *i.e.* "write", a "one" indicates a "read" request.

In addition, the SHT4x features different measurement options for different precision needs and a heater option, as detailed in **Table 5** and **Section 3**.

Com	mand	Description
BIN	HEX	Description
1111 1101	FD	Measure T & RH with highest precision (high repeatability)
1111 0110	F6	Measure T & RH with medium precision (medium repeatability)
1110 0000	E0	Measure T & RH with lowest precision (low repeatability)
1000 1001	89	Read serial
1001 0100	94	Soft Reset
0011 1001	39	Activate highest heater power for 1s

Table 5. Short overview of I²C commands for the SHT4x.

For further details on the I²C communication, such as general protocol description, data types and lengths, and checksum calculation, kindly refer to the SHT4x datasheet.

6 Quality and Material Contents

Qualification of the SHTC3 and SHT4x is performed based on the JEDEC JESD47 qualification test method. While both devices are fully RoHS and REACH compliant, the SHT4x is also WEEE compliant.

7 Further Information

This transition guide aims at providing an overview of the key differences between the SHTC3 and the SHT4x, yet it might not be fully inclusive. For further reading on the SHT4x specifications, communication, operation, and application, please consult the dedicated SHTC3 and SHT4x documents provided on the Sensirion webpage <u>www.sensirion.com</u>. In case you are in need of specific details, or would like to request assistance in transitioning from the SHTC3 to the SHT4x or any other Sensirion product, please consult us directly at <u>www.sensirion.com/en/about-us/contact/</u>.

8 Revision History

Date	Version	Page(s)	Changes
April 2021	1	all	Initial release
November 2023	1.1	All	Updated SHT4x information

Important Notices

Warning, Personal Injury

Do not use this product as safety or emergency stop devices or in any other application where failure of the product could result in personal injury. Do not use this product for applications other than its intended and authorized use. Before installing, handling, using or servicing this product, please consult the data sheet and application notes. Failure to comply with these instructions could result in death or serious injury.

If the Buyer shall purchase or use SENSIRION products for any unintended or unauthorized application, Buyer shall defend, indemnify and hold harmless SENSIRION and its officers, employees, subsidiaries, affiliates and distributors against all claims, costs, damages and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if SENSIRION shall be allegedly negligent with respect to the design or the manufacture of the product.

ESD Precautions

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take customary and statutory ESD precautions when handling this product. See application note "ESD, Latchup and EMC" for more information.

Warranty

SENSIRION warrants solely to the original purchaser of this product for a period of 12 months (one year) from the date of delivery that this product shall be of the quality, material and workmanship defined in SENSIRION's published specifications of the product. Within such period, if proven to be defective, SENSIRION shall repair and/or replace this product, in SENSIRION's discretion, free of charge to the Buyer, provided that:

- notice in writing describing the defects shall be given to SENSIRION within fourteen (14) days after their appearance;
- such defects shall be found, to SENSIRION's reasonable satisfaction, to have arisen from SENSIRION's faulty design, material, or workmanship;
- the defective product shall be returned to SENSIRION's factory at the Buyer's expense; and

• the warranty period for any repaired or replaced product shall be limited to the unexpired portion of the original period. This warranty does not apply to any equipment which has not been installed and used within the specifications recommended by SENSIRION for the intended and proper use of the equipment. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH HEREIN, SENSIRION MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE PRODUCT. ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSLY EXCLUDED AND DECLINED.

SENSIRION is only liable for defects of this product arising under the conditions of operation provided for in the data sheet and proper use of the goods. SENSIRION explicitly disclaims all warranties, express or implied, for any period during which the goods are operated or stored not in accordance with the technical specifications.

SENSIRION does not assume any liability arising out of any application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. All operating parameters, including without limitation recommended parameters, must be validated for each customer's applications by customer's technical experts. Recommended parameters can and do vary in different applications.

SENSIRION reserves the right, without further notice, (i) to change the product specifications and/or the information in this document and (ii) to improve reliability, functions and design of this product.

Copyright © 2021, by SENSIRION. CMOSens® is a trademark of Sensirion. All rights reserved

Headquarters and Subsidiaries

Sensirion AG

Laubisruetistr. 50 CH-8712 Staefa ZH Switzerland

phone: +41 44 306 40 00 fax: +41 44 306 40 30 info@sensirion.com www.sensirion.com

Sensirion Taiwan Co. Ltd phone: +886 3 5506701 info@sensirion.com www.sensirion.com Sensirion Inc., USA phone: +1 312 690 5858 info-us@sensirion.com www.sensirion.com

Sensirion Japan Co. Ltd. phone: +81 3 3444 4940 info-jp@sensirion.com www.sensirion.com/jp Sensirion Korea Co. Ltd. phone: +82 31 337 7700~3 info-kr@sensirion.com www.sensirion.com/kr

Sensirion China Co. Ltd. phone: +86 755 8252 1501 info-cn@sensirion.com www.sensirion.com/cn

To find your local representative, please visit www.sensirion.com/distributors